Improving the In Silico Assessment of Proarrhythmia Risk by Combining hERG (Human Ether-à-go-go-Related Gene) Channel-Drug Binding Kinetics and Multichannel Pharmacology.

نویسندگان

  • Zhihua Li
  • Sara Dutta
  • Jiansong Sheng
  • Phu N Tran
  • Wendy Wu
  • Kelly Chang
  • Thembi Mdluli
  • David G Strauss
  • Thomas Colatsky
چکیده

BACKGROUND The current proarrhythmia safety testing paradigm, although highly efficient in preventing new torsadogenic drugs from entering the market, has important limitations that can restrict the development and use of valuable new therapeutics. The CiPA (Comprehensive in vitro Proarrhythmia Assay) proposes to overcome these limitations by evaluating drug effects on multiple cardiac ion channels in vitro and using these data in a predictive in silico model of the adult human ventricular myocyte. A set of drugs with known clinical torsade de pointes risk was selected to develop and calibrate the in silico model. METHODS AND RESULTS Manual patch-clamp data assessing drug effects on expressed cardiac ion channels were integrated into the O'Hara-Rudy myocyte model modified to include dynamic drug-hERG channel (human Ether-à-go-go-Related Gene) interactions. Together with multichannel pharmacology data, this model predicts that compounds with high torsadogenic risk are more likely to be trapped within the hERG channel and show stronger reverse use dependency of action potential prolongation. Furthermore, drug-induced changes in the amount of electronic charge carried by the late sodium and L-type calcium currents was evaluated as a potential metric for assigning torsadogenic risk. CONCLUSIONS Modeling dynamic drug-hERG channel interactions and multi-ion channel pharmacology improves the prediction of torsadogenic risk. With further development, these methods have the potential to improve the regulatory assessment of drug safety models under the CiPA paradigm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Correction to: Improving the In Silico Assessment of Proarrhythmia Risk by Combining hERG (Human Ether-à-go-go-Related Gene) Channel-Drug Binding Kinetics and Multichannel Pharmacology.

In the article by Li et al, “Improving the In Silico Assessment of Proarrhythmia Risk by Combining hERG (Human Ether-à-go-go-Related Gene) Channel–Drug Binding Kinetics and Multichannel Pharmacology”, which published online on February 15, 2017, and appeared in the February 2017 issue of the journal (Circulation: Arrhythmia and Electrophysiology. 2017;10:e004628. DOI: 10.1161/CIRCEP.116.004628,...

متن کامل

A temperature-dependent in silico model of the human ether-à-go-go-related (hERG) gene channel.

INTRODUCTION Current regulatory guidelines for assessing the risk of QT prolongation include in vitro assays assessing drug effects on the human ether-à-go-go-related (hERG; also known as Kv11.1) channel expressed in cell lines. These assays are typically conducted at room temperature to promote the ease and stability of recording hERG currents. However, the new Comprehensive in vitro Proarrhyt...

متن کامل

Refining insights into high-affinity drug binding to the human ether-à-go-go-related gene potassium channel.

hERG (human ether-à-go-go-related gene) potassium (K(+)) channels play a crucial role in electrophysiological activity in the heart, exerting a profound influence on ventricular action potential repolarization and on the duration of the QT interval of the electrocardiogram. hERG channels are strongly implicated in the acquired form of long QT syndrome in that they exhibit a unique susceptibilit...

متن کامل

Drug binding to the inactivated state is necessary but not sufficient for high-affinity binding to human ether-à-go-go-related gene channels.

Drug block of the human ether-à-go-go-related gene K(+) channel (hERG) is the most common cause of acquired long QT syndrome, a disorder of cardiac repolarization that may result in ventricular tachycardia and sudden cardiac death. We investigated the open versus inactivated state dependence of drug block by using hERG mutants N588K and N588E, which shift the voltage dependence of inactivation ...

متن کامل

High-affinity blockade of human ether-a-go-go-related gene human cardiac potassium channels by the novel antiarrhythmic drug BRL-32872.

Human ether-a-go-go-related gene (HERG) potassium channels are one primary target for the pharmacological treatment of cardiac arrhythmias by class III antiarrhythmic drugs. These drugs are characterized by high antiarrhythmic efficacy, but they can also initiate life-threatening "torsade de pointes" tachyarrhythmias. Recently, it has been suggested that combining potassium and calcium channel ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation. Arrhythmia and electrophysiology

دوره 10 2  شماره 

صفحات  -

تاریخ انتشار 2017